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Abstract 

Through usage of a large number of cosmetic products, consumers are very often exposed to toxic chemicals. This paper 

aimed to propose a model for the prediction of chemical functions and weight fractions in these products based on the 

structural and physico-chemical properties of the substances. Due to the imbalance of classes we used Support Vector 

Machine (SVM) method, which can complement a smaller class with the examples that are most similar to it and identify the 

examples that are most different. The generality of the SVM method was additionally enhanced by combining it with 

ensemble Bootstrap Aggregation (Bagging). The research results showed that the proposed bagging SVM method can 

overcome the disadvantages of previously applied methods. Furthermore, it can help address the lack of information needed 

to assess exposure to risk from the use of cosmetic products containing toxic chemicals in their composition. The proposed 

models can be applied to predict whether a certain chemical may be a substitute for a function performed by another possibly 

toxic chemical in a cosmetic product, as well as to determine the quantity proportion of a certain dangerous chemical on the 

basis of its chemical structure and physico-chemical properties. 

 

Rezumat 

Prin utilizarea unui număr mare de produse cosmetice, consumatorii sunt foarte des expuși la substanțe chimice toxice. 

Această lucrare a avut ca scop propunerea unui model de predicție a funcțiilor chimice și ponderii în aceste produse, pe baza 

proprietăților structurale și fizico-chimice ale substanțelor. Datorită structurilor chimice variate, am folosit metoda Support 

Vector Machine (SVM), care poate completa o clasă mai mică cu exemplele care sunt cel mai asemănătoare cu aceasta și 

poate identifica exemplele care sunt cele mai diferite. Generalitatea metodei SVM a fost îmbunătățită prin combinarea 

acesteia cu ansamblul Bootstrap Aggregation (Bagging). Rezultatele cercetării arată că metoda SVM propusă poate depăși 

dezavantajele metodelor aplicate anterior. Aceasta poate contribui la abordarea lipsei de informații necesare pentru a evalua 

expunerea la riscuri prin utilizarea produselor cosmetice care conțin substanțe toxice în compoziția lor. Modelele propuse pot 

fi aplicate pentru identifica dacă o anumită substanță chimică poate fi un substitut pentru o altă substanță chimică posibil 

toxică într-un produs cosmetic, precum și pentru a determina proporția cantitativă a unei anumite substanțe periculoase ținând 

cont de structura chimică și de proprietățile fizico-chimice ale acesteia. 
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Introduction 

Instead of the expected beneficial effect, adverse and 

harmful reactions may occur at the site of application 

of the cosmetic product. The main cause of side effects 

and toxic reactions can be a cosmetically active substance 

or excipient [31]. Allergic reactions are more common 

than irritants. Many substances found in cosmetic 

products are both irritants and sensitizers (e.g. perfumes) 

that and can cause allergic dermatitis [14]. Every single 

case of hypersensitivity, contact allergies, caused by a 

cosmetic product is harmful [32]. Some low molecular 

weight substances are converted into primary irritants 

or allergens only after UV-A and UV-B radiation and 

short waves of the visible spectrum. Photoallergic 

contact dermatitis can develop after using sunscreen 

products [20]. Consumers of cosmetic products are 

exposed to the toxic chemicals used in the manufacture 

of these products on a daily basis. In most cases, 

manufacturers provide neither a complete information 

about their qualitative composition, i.e. the set of 

chemicals they contain, nor the quantitative composition, 

i.e. the weight fraction of chemicals. The main goals 

of green chemistry are to reduce the use of toxic 

chemicals (cancerous as well as those that affect the 

reproductive and nervous system) while preserving 

the functionality of the chemical ingredients and the 

efficiency of the product. Classification of the chemicals 

by the chemical function that they perform may contribute 

to finding less toxic substitutes among chemicals that 
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have the same functionality [26, 33, 38]. The risk of 

exposure is highly dependent on the quantity of toxic 

chemical used, and those information are often un-

available or incomplete due to the lack of adequate 

regulations and business policies of the manufacturer 

[7, 8, 11]. There are a large number of chemicals on 

the market while no high-quality in vivo toxicity data 

exist for most of them, and for many there are no 

toxicity data whatsoever [39]. The standard method 

for toxicity assessment is high-throughput screening 

(HTS) applied by the United States Environmental 

Protection Agency (US EPA). This method involves 

assessing the potential harmfulness of a chemical in 

vitro by quantifying its bioactivity. The EPA evaluated 

about 8,000 chemicals using this method. However, 

there are approximately 100,000 chemicals in use in 

the US market, which are difficult to test individually 

[26]. EPA is currently working to develop methods for 

the substitution of chemicals that have been identified 

as hazardous with safe chemicals aimed at providing 

formulations that are safe for humans and the environment 

[34, 35]. Such methods involve identifying alternatives 

from available chemical databases. They take an individual 

chemical to evaluate and return multiple possible 

alternatives (low-throughput approach). Such an approach 

is not efficient enough for many chemicals, therefore, 

the methods are used to automatically identify groups 

of chemicals with appropriate function in large 

databases (high-throughput-HT access) for further, 

more accurate testing. Recently, there have been a 

number of studies proposing quantitative structure – 

use relationship (QSUR) methods for classifying and 

predicting the functionality of chemicals based on their 

chemical structure and/or physical chemical properties 

[19, 26]. 

Isaacs et al. [19] proposed a model for prediction of 

functions and weight proportion of chemicals in cosmetic 

products based on the physical-chemical properties 

and use of the chemicals in production, based on the 

random forest method. Due to the imbalance of classes 

(the number of examples corresponding to one function 

is much smaller than the number of examples 

corresponding to all other functions), they applied 

under-sampling so that the smaller class equals the 

greater one. Phillips et al. [26] applied the same balanced 

random forest method for the prediction of chemical 

function in a broader set of consumer products. The 

main drawback of the method used in this study is 

random under-sampling within the ensemble method, 

which leads to higher number of misclassified examples 

of negative class i.e. small precision for the positive 

class. Such a model classifies well known examples 

i.e. chemicals in a training set, but on an unknown set 

there is less potential for accurate classification of 

positive class examples (chemicals that could have a 

certain function based on their structure and physical 

chemical properties). 

Therefore, the aim of our research is to overcome the 

problem of class imbalance more efficiently, i.e. to 

generate the QSUR models with a higher precision 

of the positive class and thus with a more accurate 

prediction by targeting chemicals that could act as 

potential functional substitutes for use in cosmetic 

products. 

It has been confirmed in the literature that the SVM 

(Support Vector Machine) method could successfully 

solve the problem of class imbalance by eliminating 

data noise that leads to class overlaps, which means 

that this method can be used as a pre-processor that 

refines data [1, 9, 13]. The classifiers applied to SVM 

output (on the refined dataset) significantly improve 

their predictive performance [24, 25, 27]. Farquad 

and Bose [13] tested SVM as a pre-processor for 

highly unbalanced data (94%: 6%) and showed that 

SVM can balance data better than commonly used 

standard techniques such as under-sampling (taking 

a subset of a larger class) or oversampling 

(supplementing of minor class with new examples). 

SVM provides more minor class examples by 

associating the most similar major class examples to 

the minor class. Additionally, the authors showed that 

when SVM refines data and balances classes, other 

classification methods (such as neural network, 

logistic regression, and Random Forest), 

significantly reduce the misclassification of minor 

classes on such a refined dataset. Recently, the SVM 

method has been increasingly used in biochemistry and 

drug design researches to generate quantitative 

structure-activity relationship (QSAR) models that 

predict the activity of molecules based on their structural 

and other properties [3, 4, 10, 16, 23]. Unlike QSUR 

models that predict the function of a chemical based 

on its chemical structure, QSAR models predict its 

biological activity. Furthermore, QSAR models are 

mainly focused on organic matter whereas QSUR models 

are focused on toxic chemicals with an aim to replace 

them with the less hazardous ones that have similar 

functions [26]. The Ensemble Bootstrap Aggregation 

(Bagging) method enhances predictive performances 

by generating multiple models using a random sampling 

(with replacement) of the training set and selecting 

random subsets of predictors when creating models. 

Prediction is performed by the ensemble average of 

all models, and the number of models that “vote” for 

a result determines the probability of accuracy or 

confidence of the result. 

Taking into consideration prior research, this paper 

proposes the bagging SVM method as a pre-processor 

of data to generate QSUR models aiming at enhancing 

their predictive performances. Moreover, to solve the 

problem of chemical high-fraction class misclassification 

highlighted by Isaacs et al. [19], a multi-class classification 

was proposed using the LibSVM implementation of the 

SVM method [6, 12] which applies the one-against-

one approach for k-class learning problems by solving 
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2
 binary SVMs. Hsu & Lin [18], have shown 

that the one-against-one approach is better than the 

one-against-all for large datasets and the training time 

for this method is shorter. 

 

Materials and Methods 

This section aims at defining the data and their sources, 

as well as the predictive methods that will be applied. 

Data 

This paper uses two publicly available datasets that 

were formed in the research described in the previous 

section. Using publicly available database of the chemical 

ingredients of cosmetics with the function that they 

have in a product (CosIng), Isaacs et al. [19] formed 

the Functional Use (FUse) database. They have reduced 

many functions by harmonizing similar functions into 

a common one. Each chemical in this base has its 

own unique CASRN code, while one chemical can 

have multiple functions (in different products). Data 

on the weight fractions of chemicals in individual 

cosmetic products were obtained from the Consumer 

Product Chemical Profile Database (CPCPdb) and on-

line product information provided by manufacturers 

(Material Safety Data Sheets – MSDS sheets). The 

products are assigned to the appropriate category, and 

each chemical within a product has an appropriate 

harmonized function taken from the FUse database 

and merged based on a unique CASRN code of the 

chemical. Thus, they obtained a data set containing a 

chemical as an ingredient in each row in a product of 

a certain category with a unique harmonized function 

and a weight fraction in that category (the unique 

identifier for the chemical, the product category and 

the function of the chemical is CASRN). This dataset 

is coupled via CASRN to the corresponding physical 

and chemical properties of the chemicals and to their 

use in manufacturing. The combined data set includes 

828 chemicals and 17,103 of their functional uses (35 

harmonized functions) in 4,115 cosmetic products, 

i.e. 66 categories of these products. 

Phillips et al. [26] expanded the FUse database from 

previous research with new chemicals and their functions 

in consumer products, using product composition 

information from the manufacturers’ web pages. The 

functions are harmonized so that each chemical has a 

unique function. This set of chemicals is coupled to 

sets of chemicals that have structural and physical-

chemical descriptors via a unique CASRN code. Structural 

descriptors are publicly available and taken from the 

EPA’s Distributed Structure-Searchable Toxicity – 

DSSTox database, and physical-chemical descriptors 

(molecular weight, vapour pressure, water solubility, 

Henry’s Law constant, log of the octanol – air partition 

coefficient - log(Koa), the log of the octanol – water 

coefficient - log(Kow), half-life of a chemical in soil, 

sediment, water, and air and the persistence of a chemical 

in the environment) were obtained using the US EPA’s 

Estimation Program Interface (EPI) Suite. Thus, a 

training set of 4,791 unique chemicals was obtained 

with 729 structural properties and 11 physical-chemical 

properties. Retaining only harmonized functions that 

include at least 10 chemicals, 49 remained in in the 

training set. 

Our first dataset was taken from the FUse database 

created in the research of Isaacs et al. [19] covering 

functional use and weight fraction of chemicals in 

cosmetic product categories (17,103 functional uses). 

The data were merged (via a unique CASRN) with 

structural descriptors (729 descriptors in total) and 

physical-chemical properties of chemicals (11 descriptors 

in total) taken from supplementary materials in a study 

of Phillips et al. [26]. Structural descriptors are binary 

(dummy) variables that have a value of 1 if a chemical 

has a structural property defined by that descriptor (e.g.: 

atom.element_main_group, atom.element_metal_group_ 

I_II, bond.CC..O.C_ketone_alkane_cyclic_.C4., etc.), 

while if it does not have such a property, the value of 

the variable is 0. Physical descriptors are numerical 

variables such as molecular weight, vapour pressure, 

water solubility, Henry’s Law constant, the log of the 

octanol – air partition coefficient - log(Koa), the log 

of the octanol – water coefficient - log(Kow), half-

life of a chemical in soil, sediment, water and air, and 

the persistence of a chemical in the environment. After 

merging and eliminating the functions that have less 

than 10 uses, there are 11,240 functional uses remaining 

in this dataset, thus representing the final training set 

(Fuse_Str_Pc) (Table I). According to Isaacs et al. [19] 

weight fractions were generalized to three categories: 

low (0.0001 - 0.01), medium (0.01 - 0.3) and high 

(0.3 - 1) so as to apply the classification predictive 

method. In this way, the dataset was prepared for 

prediction of weight fractions of chemicals in cosmetic 

products based on structural and physical-chemical 

descriptors, functional uses and categories of cosmetic 

products, using the multi-class SVM bagging method. 

The second dataset was taken from the expanded FUse 

database created in the study by Phillips et al. [26], 

which contains data on chemicals and their harmonized 

functions in consumer products. As in the previous 

case, the data were merged (via a unique CASRN) 

with structural and physical-chemical descriptors taken 

from the same work, and functions that included less 

than 10 chemicals were removed. Thus, a final training 

set (HFunc_Str_Pc) was obtained, comprising 4,665 

unique chemicals with 729 structural features, 11 physical-

chemical properties and 43 harmonized functions 

(Table II). This set was used to generate the QSUR 

model (for prediction of functional uses based on 

structural and physical-chemical descriptors) by the 

SVM bagging method. 
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Table I 

Training set Fuse_Str_Pc 

casrn chem_name max_WF category function atom.e

lement

_main

_group 

atom.

eleme

nt_me

tal_gr

oup_I

_II 

ring.p

olycyc

le_tric

yclo_b

enzval

ene 

molec

ular_

weight 

vapor_ 

pressure 

units 

(Pa) 

logKoa_ 

unitless 

logP_ 

unitless 

50-00-0 Formaldehyde 0.001 eye makeup, 

other 

Preservatives 0 0 0 30.03 465000 5.211 0.35 

50-00-0 Formaldehyde 0.001 eye makeup, 

other 

Preservatives 0 0 0 30.03 465000 5.211 0.35 

50-00-0 Formaldehyde 0.01 face cream/ 

moisturizer 

Preservatives 0 0 0 30.03 465000 5.211 0.35 

50-00-0 Formaldehyde 0.001 hair styling, 

gel 

Preservatives 0 0 0 30.03 465000 5.211 0.35 

50-00-0 Formaldehyde 0.001 hair styling, 

gel 

Preservatives 0 0 0 30.03 465000 5.211 0.35 

50-00-0 Formaldehyde 0.001 hair styling, 

gel 

Preservatives 0 0 0 30.03 465000 5.211 0.35 

50-00-0 Formaldehyde 0.002 eye makeup, 

other 

Preservatives 0 0 0 30.03 465000 5.211 0.35 

50-00-0 Formaldehyde 0.002 eye makeup, 

other 

Preservatives 0 0 0 30.03 465000 5.211 0.35 

50-00-0 Formaldehyde 0.0005 fragrance Preservatives 0 0 0 30.03 465000 5.211 0.35 

50-00-0 Formaldehyde 0.009 eye makeup, 

other 

Preservatives 0 0 0 30.03 465000 5.211 0.35 

50-00-0 Formaldehyde 0.00007 face wash, 

acne 

Preservatives 0 0 0 30.03 465000 5.211 0.35 

50-00-0 Formaldehyde 0.01 hand/body 

lotion 

Preservatives 0 0 0 30.03 465000 5.211 0.35 

50-00-0 Formaldehyde 0.00005 face cream/ 

moisturizer 

Preservatives 0 0 0 30.03 465000 5.211 0.35 

50-00-0 Formaldehyde 0.01 body wash Preservatives 0 0 0 30.03 465000 5.211 0.35 

50-14-6 Ergocalciferol 0.01 nail products, 

other 

Skin 

Conditioners 

0 0 0 396.66 8.46E-08 12.4 10.44 

50-14-6 Ergocalciferol 0.01 nail products, 

other 

Skin 

Conditioners 

0 0 0 396.66 8.46E-08 12.4 10.44 

50-14-6 Ergocalciferol 0.01 hair styling Skin 

Conditioners 

0 0 0 396.66 8.46E-08 12.4 10.44 

50-21-5 Lactic acid 0.001 body wash Skin 

Conditioners 

0 0 0 90.08 3.81 4.758 -0.65 

50-21-5 Lactic acid 0.001 face wash Skin 

Conditioners 

0 0 0 90.08 3.81 4.758 -0.65 

50-21-5 Lactic acid 0.05 foot care Skin 

Conditioners 

0 0 0 90.08 3.81 4.758 -0.65 

50-21-5 Lactic acid 0.05 foot care Skin 

Conditioners 

0 0 0 90.08 3.81 4.758 -0.65 

50-21-5 Lactic acid 0.01 toner Skin 

Conditioners 

0 0 0 90.08 3.81 4.758 -0.65 

 

Table II 

Training set HFunc_Str_Pc 

Casrn. chem_name harmonized_

function 

atom.element_ 

main_group 

atom.element_ 

metal_group_ 

I_II 

ring.polycycle_

tricyclo_ 

benzvalene 

molecular_ 

weight 

logKoa_ 

unitless 

logP_ 

unitless 

50-14-6 Ergocalciferol skin 

conditioner 

0 0 0 396.66 12.4 10.44 

50-69-1 D-Ribose skin 

conditioner 

0 0 0 150.13 8.767 -2.43 

50-89-5 Thymidine skin 

conditioner 

0 0 0 242.23 14.376 -0.64 
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Casrn. chem_name harmonized_

function 

atom.element_ 

main_group 

atom.element_ 

metal_group_ 

I_II 

ring.polycycle_

tricyclo_ 

benzvalene 

molecular_ 

weight 

logKoa_ 

unitless 

logP_ 

unitless 

54-47-7 Pyridoxal 

phosphate 

skin 

conditioner 

0 0 0 247.15 17.792 0.37 

56-65-5 Adenosine 

triphosphate 

skin 

conditioner 

0 0 0 507.19 37.869 -3.61 

56-86-0 L-Glutamic 

acid 

skin 

conditioner 

0 0 0 147.13 8.531 -3.83 

57-00-1 Creatine skin 

conditioner 

0 0 0 131.14 8.446 -3.72 

58-55-9 Theophylline skin 

conditioner 

0 0 0 180.17 10.123 -0.39 

58-61-7 Adenosine skin 

conditioner 

0 0 0 267.25 19.233 -1.38 

59-23-4 Galactose skin 

conditioner 

0 0 0 180.16 6.189 -2.43 

59-30-3 Folic acid skin 

conditioner 

0 0 0 441.41 28.028 -2.81 

60-27-5 Creatinine skin 

conditioner 

0 0 0 113.12 8.245 -1.21 

60-81-1 Phlorizin skin 

conditioner 

0 0 0 436.42 26.606 0.72 

60-92-4 cAMP skin 

conditioner 

0 0 0 329.21 22.963 -2.36 

61-19-8 Adenosine-5-

phosphate 

skin 

conditioner 

0 0 0 347.23 27.708 -1.68 

51-78-5 4-Aminophenol 

hydrochloride 

hair dye 0 0 0 145.59 12.034 -3.09 

55-55-0  hair dye 0 0 0 280.3 14.081 2.34 

50-01-1 Guanidine 

mono-

hydrochloride 

buffer 0 0 0 95.53 10.006 -6.13 

56-18-8 Iminobis-3-

propylamine 

buffer 0 0 0 131.22 9.5 -1.15 

50-00-0 Formaldehyde antimicrobial 0 0 0 30.03 5.211 0.35 

54-11-5 Nicotine antimicrobial 0 0 0 162.24 8.081 1 

 

SVM 

To classify linearly non-separable classes that appear 

in case of class overlaps and noise in the data, Vapnik 

[37] proposed the SVM method that maps data (it 

views as n-dimensional vectors) from original space 

to feature space, where the classes can be separated 

using hyper-alignment. Finding such a hyper-alignment 

minimizes the distance between its end position (so 

that the gap between classes, i.e. the margins, is as 

large as possible) and the closest points (support 

vectors). Instead of an explicit mapping function to a 

greater-dimension space, kernel function that allows 

the calculation of the scalar product of the vector in the 

original space (kernel trick) is used. Maximizing the 

margin in a greater-dimension space is reduced to the 

quadratic programming optimization problem in the 

original space, using the kernel function. Different 

kernel functions can be used, but it is often the most 

efficient and the most widely used RBF (Radial Basis 

Function) [28]. Training of SVM classifiers is being 

realized by choosing the optimal values of the gamma 

parameter for the RBF kernel, and the parameter C that 

represents the boundary for the margin i.e. the empty 

space between the classes. Choosing smaller values for 

parameter C reduces over-fitting and increases the 

generality of the SVM model i.e. its predictive performance. 

Grid-search and k-fold cross-validation. A grid-search 

technique combined with k-fold cross-validation is 

used to select the optimal SVM parameters (C and γ). 

Grid-search sets appropriate rankings and steps for 

parameters (i.e. defines grid) and then tests their 

combinations so that the best predictive learner 

performances are reached. The k-fold cross-validation 

process is implemented by dividing the training set 

into k subsets, of which k-1 is used to train the model 

and the one remaining to test the predictive performances 

of the model using unknown examples. The procedure 

is iteratively repeated so that each of the k sub-sets 

serves as a test set. The final predictive performances 

are the averages of the model performances obtained 

in these k iterations. 
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Results and Discussion 

In order to predict the functions of chemicals in 

cosmetic products based on their structural and physical-

chemical properties, i.e. to generate QSUR models, on 

the training set HFunc_Str_Pc (numerical data are 

normalized 0-1 rank transformation), the bagging SVM 

learners were trained. Model training involves optimizing 

the C and γ parameters using 5-fold cross-validation 

so that maximum predictive learner performances are 

achieved. Using the grid-search technique i.e. the 

setting appropriate rankings for the parameters, optimal 

combinations of these parameters were found for the 

43 bagging SVM models to predict each of the 43 

harmonized functions. Figure 1 shows the predictive 

performances of the generated models. 

As can be seen from Figure 1, the accuracy of the 

model based on 5-fold cross-validation ranges from 

81.63% to 99.98%. All models are valid in contrast 

to the results obtained by Phillips et al. [26] where 

8 of the 46 models had a balanced accuracy of less 

than 75%. For these very important functions such as 

masking agent, solvent, viscosity, controlling agent 

and perfumer, models with accuracy greater than 

96.40% were obtained. However, it should be taken 

into consideration that this is not a balanced accuracy, 

so much of the accuracy falls on the major (negative) 

class (true negative rate i.e. specificity averages 98.94%, 

while true positive rate i.e. sensitivity averages 43.99%). 

The lower sensitivity of the models indicates that the 

models are not over-fitted, i.e. too dependent on the 

training set for the positive class, which gives them 

the potential for better performance on an unknown 

dataset. The specificity of the model is high because 

the negative class is much larger than the positive 

class. The small precision of the positive class, which 

averages 49.34%, indicates that a number of examples 

of the negative class that are the least distant from 

the positive class (chemicals most similar in structure 

and physical-chemical properties to negative class 

chemicals), declared as a positive (minor) class through 

the SVM classifier. 

Applying the resulting bagging SVM models to the 

training set, a prediction was generated for 43 functions. 

Each bagging prediction generates multiple SVM 

models and accordingly each bagging prediction has 

its own probability. Predictions with high probability 

mean that the greatest number of SVM models thus 

generated voted for a chemical to have/does not have 

a certain function. 

The goal now is to increase the precision and sensitivity 

of the model (precision of a positive class and true 

positive rate) by taking from a large number of 

negative class representatives only those chemicals 

that are farthest from the chemicals belonging to the 

positive class (those having the structure and properties 

differing to the greatest extent). Members of the negative 

class to be selected were determined by bagging 

SVM through assigning them the highest probability 

of belonging to the negative class. 

Therefore, the next step is to determine the optimal 

threshold (minimum likelihood) of Pr, for predictions 

that will be accepted. For this purpose, the DT method 

with the gini_index measure for partitioning [37] and 

5-fold cross validation were used. Specifically, the 

optimal threshold for the probability of an SVM 

prediction was determined for each of the 43 models 

as follows. A number of chemicals whose major class 

prediction was less than the Pr value were excluded from 

the training set and 5-fold DT predictive performances 

were tested. The parameter Pr is determined to obtain 

the maximum predictive performance of the DT 

learner. Figure 2 shows the predictive performances 

of the QSUR models thus obtained for each of the 

43 functions. 

It can be seen in Figure 2 that the average accuracy 

of the final QSUR models is 95.95%, the precision 

averages 88.49%, while the average sensitivity and 

specificity are 80.57% and 97.40%, respectively. Thus, 

after removing the example of a negative class whose 

probability of belonging to the class is less than the Pr 

threshold from the training set, precision increased on 

average by 39.15%, sensitivity on average by 36.58%, 

while the sensitivity decreased on average by 1.54%. 

In the study of Phillips et al. [26] for 49 harmonized 

function the 49 balanced random forest models were 

generated, of which 41 were valid (with balanced 

accuracy of > 75%). For 8 functions (which include 

some of the most important ones such as perfumer 

and solvent) no valid models were obtained i.e. random 

balanced under-sampling was not a method effective 

enough to predict significant differences in the structure 

and physical-chemical properties of these chemicals 

compared to the others. Most models have well 

recognized the chemicals that make up the positive 

class in the training set (sensitivity models average 

about 85%), however the average precision (positive 

classes) is only about 14%, which means that the 

predictive power of the model is weak. This is due 

to the large number of false positives (chemicals that 

do not have a specific function, but are misclassified by 

the model as having them). To identify the chemicals 

that could be functional substitutes, the generated models 

were applied to 6,356 chemicals in the Tox21 library 

for which there are structural and physical-chemical 

descriptors available. Consistent with the small precision 

of the positive class of obtained models, about 88% 

of the predictions were invalid (with a probability 

of less than 50%). 

Comparing the performances of the QSUR models 

thus obtained with the results from the confusion 

matrix obtained by Phillips et al., [26] (Table III) it 

can be seen that their accuracy averaged 91.81%, 

sensitivity 84.62%, specificity 91.83%, and precision 

13.73%. The precision of our QSUR models is 

significantly improved over theirs, while the other 3 
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indicators were similar. The foregoing could lead to a 

conclusion that the predictive potential of our QSUR 

models for the positive class (chemicals having some 

function) is increased. 

 

 
Figure 1. 

Predictive performances of the bagging SVM models (5- fold cross-validation, positive class: 1) 
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Figure 2. 

Predictive performance of DT models on bagging SVM output (5- fold cross-validation, positive class: 1) 
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Table III 

Confusion matrix for QSUR models from the research Phillips et al. [26] 

Harmonized function tr_neg tr_pos fls_neg fls_pos Accur Precis Sensit Specif 

Additive 4549 15 2 225 95.26% 6.25% 88.24% 95.29% 

rubber additive 5572 7 3 224 96.09% 3.03% 70.00% 96.14% 

adhesion promoter 4659 19 2 111 97.64% 14.62% 90.48% 97.67% 

Antimicrobial 4175 133 42 441 89.92% 23.17% 76.00% 90.45% 

Antioxidant 4072 70 18 631 86.45% 9.99% 79.55% 86.58% 

antistatic agent 4366 19 0 406 91.53% 4.47% 100.00% 91.49% 

Buffer 4269 30 5 487 89.73% 5.80% 85.71% 89.76% 

Catalyst 4250 104 30 407 90.88% 20.35% 77.61% 91.26% 

Chelator 5417 33 3 353 93.87% 8.55% 91.67% 93.88% 

Colorant 4063 288 69 371 90.82% 43.70% 80.67% 91.63% 

Crosslinker 4315 108 30 338 92.32% 24.22% 78.26% 92.74% 

Emollient 4338 104 22 327 92.72% 24.13% 82.54% 92.99% 

Emulsifier 4368 11 0 412 91.40% 2.60% 100.00% 91.38% 

emulsion stabilizer 5040 19 2 745 87.13% 2.49% 90.48% 87.12% 

film forming agent 4251 37 9 494 89.50% 6.97% 80.43% 89.59% 

flame retardant 4480 62 9 240 94.80% 20.53% 87.32% 94.92% 

Flavorant 3968 539 105 1194 77.63% 31.10% 83.70% 76.87% 

foam boosting agent 5630 19 1 156 97.30% 10.86% 95.00% 97.30% 

Foamer 5560 9 2 235 95.92% 3.69% 81.82% 95.94% 

Fragrance 2635 1291 193 672 81.95% 65.77% 86.99% 79.68% 

hair conditioner 4184 66 11 530 88.71% 11.07% 85.71% 88.76% 

hair dye 5213 95 9 489 91.42% 16.27% 91.35% 91.42% 

heat stabilizer 4309 14 5 463 90.23% 2.94% 73.68% 90.30% 

Humectant 5422 7 5 372 93.51% 1.85% 58.33% 93.58% 

lubricating agent 5248 8 2 548 90.53% 1.44% 80.00% 90.55% 

Monomer 4554 83 5 149 96.79% 35.78% 94.32% 96.83% 

organic pigment 4502 94 1 194 95.93% 32.64% 98.95% 95.87% 

Oxidizer 5190 11 1 604 89.58% 1.79% 91.67% 89.58% 

Photoinitiator 4537 12 3 239 94.95% 4.78% 80.00% 95.00% 

Plasticizer 4355 22 7 407 91.36% 5.13% 75.86% 91.45% 

preservative 4947 40 8 811 85.89% 4.70% 83.33% 85.92% 

Reducer 5177 25 1 603 89.60% 3.98% 96.15% 89.57% 

rheology modifier 5536 7 6 257 95.47% 2.65% 53.85% 95.56% 

skin conditioner 4050 117 37 587 86.98% 16.62% 75.97% 87.34% 

skin protectant 4332 14 7 438 90.71% 3.10% 66.67% 90.82% 

soluble dye 5447 19 0 340 94.14% 5.29% 100.00% 94.12% 

Surfactant 4333 136 10 312 93.28% 30.36% 93.15% 93.28% 

UV absorber 5093 70 16 627 88.93% 10.04% 81.40% 89.04% 

Vinyl 4697 19 0 75 98.43% 20.21% 100.00% 98.43% 

wetting agent 5645 22 2 137 97.61% 13.84% 91.67% 97.63% 

Whitener 5640 10 1 155 97.31% 6.06% 90.91% 97.33% 

Average     91.81% 13.73% 84.62% 91.83% 

 

Bagging SVM prediction did the pre-processing of 

data for the DT learner and significantly improved its 

predictive performances even in the case of strong 

class imbalance. Instead of random under-sampling 

used in the study by Phillips et al. [26] to ensure 

class balancing, an under-sampling of the major class 

was made here based on bagging SVM prediction, i.e. 

only prediction with a higher probability of belonging 

to the major class was included in the sample. Thus, 

valid models were obtained for all 43 features with 

high predictive performances. 

Based on the generated DT models, it can be concluded 

which structural and physical-chemical properties are 

most responsible for distinguishing the chemicals 

belonging to the positive class from the others. Thus, 

chemicals that have these properties can be identified 

and tested for potential substitutes. For example, the 

rules for the positive class derived from the DT model 

for the fragmentation function in Table IV show the 

structural and physicochemical properties that should 

satisfy the potential substitutes for this function in 

cosmetic products. 

Rule 5 is the most important as it covers the largest 

number (1347) of positive examples with an accuracy 

of 95.73%. There are a number of studies/reports 

stating that 95% of the chemicals used in cosmetic 

products as fragrance components are of synthetic 

origin, derived from petroleum. The odour components 
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either of synthetic or of natural origin are the other 

allergens in frequency of causing reactions, accounting 

for 12.5% of all reactions [30]. The chemicals can 

cause symptoms such as: respiratory irritation, increased 

asthma, allergic reactions, mucosal irritations, migraines, 

headaches, skin problem, cognitive problem, gastro-

intestinal problem, contact dermatitis, urticarial and 

photosensitivity. Some of these chemicals are lyral 

(synthetic lily scent), nitro and polycyclic musks, amyl 

cinnamal (usually of synthetic origin, though it may 

be of natural origin, having a floral jasmine-like scent), 

etc. These compounds are widely used as fragrances 

in various personal care products such as cosmetics 

and perfumery. In recent years, a large number of 

preparations have been marketed, which are labelled 

as odourless preparations, with the presence of vegetable 

ingredients or oils. Concealed allergens include rose 

oil, vanilla and sweet almondoil. Lilal - Butyl-phenyl-

methyl-propanal causes contact dermatitis and is often 

found as a fragrant ingredient in perfumes, shampoos, 

bath preparations and lotions [2]. 

Table IV 

Positive class rules derived from DT models 

DT rules 

Rule 1:  1 {0 = 2, 1 = 14}, Accuracy = 87.50% 

logKoa_unitless > 0.199 

logKoa_unitless > 0.229 

bond.C..O.O_carboxylicEster_aromatic = true 

logKoa_unitless ≤ 0.286 

Rule 2: 1 {0 = 0, 1 = 6}, Accuracy = 100% 

logKoa_unitless > 0.199 

logKoa_unitless ≤ 0.229 

chain.aromaticAlkane_Ph.C1_acyclic_generic = false 

bond.COH_alcohol_ter.alkyl = false 

chain.alkaneCyclic_ethyl_C2_.connect_noZ. = true 

 ring.hetero_.5._N_pyrrole_generic = false 

persistence_units (hr) ≤ 0.084 

Rule 3: 1 {0 = 0, 1 = 8}, Accuracy = 100% 

logKoa_unitless > 0.199 

logKoa_unitless ≤ 0.229 

chain.aromaticAlkane_Ph.C1_acyclic_generic = false 

bond.COH_alcohol_ter.alkyl = true 

Rule 4: 1 {0 = 4, 1 = 45}, Accuracy = 91.83% 

logKoa_unitless > 0.199 

logKoa_unitless ≤ 0.229 

chain.aromaticAlkane_Ph.C1_acyclic_generic = true 

bond.C..O.O_carboxylicAcid_generic = false 

water_solubility_units (mg/L) ≤ 0.129 

bond.X.any._halide = false 

bond.CN_amine_aliphatic_generic = false 

Rule 5: 1 {0 = 60, 1 = 1347}, Accuracy = 95.73% 

logKoa_unitless ≤ 0.199 

logP_unitless > 0.375 

bond.X.any._halide = false 

atom.element_metal_metalloid = false 

bond.OZ_oxide_peroxy = false 

bond.CN_amine_aliphatic_generic = false 

bond.C..O.O_carboxylicEster_alkenyl = false 

bond.CS_sulfide = false 

molecular_weight ≤ 0.229 

DT rules 

Rule 6: 1 {0 = 0, 1 = 20}, Accuracy = 100% 

logKoa_unitless ≤ 0.199 

logP_unitless > 0.375 

bond.X.any._halide = false 

atom.element_metal_metalloid = false 

bond.OZ_oxide_peroxy = false 

bond.CN_amine_aliphatic_generic = false 

bond.C..O.O_carboxylicEster_alkenyl = true 

chain.alkeneLinear_diene_1_2.butene = true 

Rule 7: 1 {0 = 2, 1 = 10}, Accuracy = 83.33% 

logKoa_unitless ≤ 0.199 

logP_unitless ≤ 0.375 

bond.C..O.O_carboxylicEster_alkyl = false 

bond.CC..O.C_ketone_generic = false 

 ring.hetero_.5._O_oxolane = false 

logP_unitless > 0.359 

persistence_units (hr) ≤ 0.020 

chain.alkeneLinear_mono.ene_ehtylene_terminal = 

false 

vapor_pressure_units (Pa) > 0.000 

Rule 8: 1 {0 = 2, 1 = 25}, Accuracy = 92.59% 

logKoa_unitless ≤ 0.199 

logP_unitless ≤ 0.375 

bond.C..O.O_carboxylicEster_alkyl = false 

bond.CC..O.C_ketone_generic = true 

molecular_weight ≤ 0.113 

bond.C..O.O_carboxylicAcid_alkyl = false 

chain.alkeneCyclic_ethene_C_.connect_noZ. = false 

logP_unitless > 0.335 

Rule 9: 1 {0 = 0, 1 = 24}, Accuracy = 100% 

logKoa_unitless ≤ 0.199 

logP_unitless ≤ 0.375 

bond.C..O.O_carboxylicEster_alkyl = true 

air_half_life_units (hr) > 0.000 

 

It is most commonly obtained synthetically via cross-

aldol condensation between para-terc-butylbenzaldehyde 

and propanal, followed by hydrogenation of the 

intermediate alkene. It is the clear, viscous liquid with 

a strong floral scent. In addition to causing contact 

dermatitis, it is suspected to have an effect on the 

endocrine system and oestrogen activity [2]. Citronellol 

is a colourless oily liquid with a floral scent on rose 

which is used in cleansers, hair care products, lip-

sticks, perfumes. It is a known skin allergen, causes 

eczema, and often causes complications in people with 

psoriasis [5]. Nitro- and polycyclic musks are two 

common and important synthetic musks currently in 

use [36]. In addition, due to their strong photo-

chemical toxicity, [29] carcinogenicity [17] and neuro-

toxic properties, as well as endocrine dysfunction, nitro-

musks (e.g. musk xylene), their use is being monitored 

in Japan, in the EU they are also under scrutiny, and 

further research is being conducted on their potential 

adverse effects on human health. 

The process of high-throughput screening of a set of 

unknown chemicals using the generated QSUR models 

would consist of the following steps: (1) prediction of 

the chemical function using the bagging SVM model; 
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(2) elimination of chemicals whose non-function is 

determined with probability less than Pr; (3) application 

of the DT model to predict function on the purified 

set of chemicals from step 2; (4) for each chemical, 

each of the 41 QSUR models will generate the result; 

(5) the result that has the highest confidence will 

determine the function for which that chemical can 

be the substitute; and (6) if two or more results have 

the same confidence, then the result obtained by the 

model with the highest precision of positive class will 

be the winning one. 

The next step is to generate a model for the prediction 

of weight fractions, on the training set Fuse_Str_Pc, 

in which the nominal variables are transformed into 

numerical dummy variables, while the numerical are 

normalized by a 0-1 rank transformation. By training 

bagging multi-class SVM learner, i.e. by applying 

grid-search procedure in combination with 5-fold 

cross-validation, the optimal combination of parameters 

SVM.C = 750.0 and SVM.gamma = 0.1 was obtained 

and the following predictive performance was achieved: 

accuracy – 88.47%, classification error – 11.53%, mean 

class recall – 83.44% and mean class precision – 

85.82%. 

For the purpose of predicting the fractions of chemicals 

in the product category, Isaacs et al. [19] generated a 

classification model, by generalizing fractions into 

three categories: low, medium and high fractions. They 

used structural and physical-chemical properties of 

chemicals as well as their functional uses as predictors. 

Using the random forest method, a model with a 5-

fold cross-validation error of 16.7% was generated. 

The potential for misclassification of the obtained 

model is highest for high fractions (about 22%), while 

for low and medium fractions the class precision is 

about 84%. Accordingly, applying the model to an un-

known dataset, less than 1% of chemicals are predicted 

to have high fractions (30% - 100% of total weight), 

while 35% and 65% of chemicals are predicted to have 

medium and low fractions. Therefore, the predictive 

performances of the model for the high-fraction 

chemicals that make up the majority of cosmetic product 

composition are not satisfactory. 

With our model, the precision error for the high class 

is 15%, which is a better result than the one achieved 

by Isaacs et al. [19] having amounted to 22%, and the 

5-fold classification error of the model is decreased 

by about 5%. This indicates that the multi-class bagging 

SVM model has a better predictive potential for a class 

of chemicals with a high participation in cosmetics than 

the random forest model used in the study mentioned. 

As with the QSUR model, by generating a DT model 

on bagging SVM output, taking high Pr results (those 

voted for by the great number of SVM models obtained 

by bagging) for each class should further improve the 

prediction performances. However, since most of the 

results on the training set had a Pr greater than 0.99 

(meaning that 99% of the generated SVM models 

voted for that result), the DT on the refined dataset had 

almost the same predictive performance as the SVM. 

Nevertheless, the DT model generated on SVM output 

is useful as it provides explicit classification rules for 

low, medium and high fractions from which it can 

be concluded what are the chemical properties that 

cosmetic products contain to the greatest extent. 

Table V shows some of the most significant rules 

generated by DT model for all three classes (with 

the highest accuracy and cover). 

Table V 

Rules derived from DT models for weight factions 

DT rules 

Rule 1: Medium {Low = 135, Medium = 4193, High = 60}, Acc = 95.55% 

logKoa_unitless > 0.086 

bond.S..O.O_sulfonate = false 

bond.C.O_carbonyl_generic = false 

chain.aromaticAlkane_Ar.C_meta = false 

logP_unitless > 0.352 

chain.alkaneBranch_t.butyl_C4 = false 

henrys_law_constant_units (atm-m3/mol) ≤ 0.000 

bond.X.any._halide = false 

Rule 2: Low {Low = 174, Medium = 22, High = 1}, Acc = 88.32 

logKoa_unitless > 0.086 

bond.S..O.O_sulfonate = false 

bond.C.O_carbonyl_generic = false 

chain.aromaticAlkane_Ar.C_meta = true 

Rule 3: Medium {Low = 24, Medium = 1301, High = 16}, Acc = 97.01% 

logKoa_unitless > 0.086 

bond.S..O.O_sulfonate = false 

bond.C.O_carbonyl_generic = true 

logP_unitless > 0.523 

bond.CC..O.C_ketone_alkene_cyclic_2.en.1.one_generic = false 

logP_unitless ≤ 0.685 

bond.C.O_carbonyl_1_2.di = false 
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DT rules 

Rule 4: High {Low = 0, Medium = 0, High = 114}, Acc = 100% 

logKoa_unitless > 0.086 

bond.S..O.O_sulfonate = false 

bond.C.O_carbonyl_generic = true 

logP_unitless ≤ 0.523 

bond.C..O.O_carboxylicEster_acyclic = false 

air_half_life_units (hr) > 0.001 

Rule 5: Low {Low = 595, Medium = 167, High = 0}, Acc = 78.08% 

logKoa_unitless > 0.086 

bond.S..O.O_sulfonate = true 

Rule 6: High {Low = 12, Medium = 209, High = 830}, Acc = 78.97% 

logKoa_unitless ≤ 0.086 

logP_unitless ≤ 0.466 

bond.C..O.O_carboxylicAcid_alkyl = false 

 

Thus, for example, it can be concluded from Table V, 

based on Rule 3 that cosmetic formulations can contain 

up to 30% of chemicals whose octanol-water partitioning 

coefficient is between 0.523 and 0.685. This means 

that water pollutants can be significant due to poor 

water solubility. Also, this rule shows that cosmetic 

products can contain up to 30% of chemicals with a 

carbonyl group to which they belong and some that 

are dangerous to human health. A substance that has 

a carbonyl group in it and is a common ingredient 

in various cosmetic products including liquid soaps, 

shampoos and shower creams/lotions is formaldehyde 

[21]. According to the International Agency for Research 

on Cancer, formaldehyde belongs to a group of human 

carcinogens because there is enough evidence that is 

causes cancer in humans. This fact is based on the fact 

that formaldehyde can lead to nasopharyngeal cancer 

in humans after inhalation and to squamous cell 

carcinoma of the nasal passages in rats [22]. This is 

why formaldehyde and paraformaldehyde are used 

as preservatives at concentrations of up to 0.1% in 

products used in cosmetics for oral hygiene (not to 

be used in aerosol products) and up to 0.2% in other 

products [15]. 

The procedure for predicting the unknown fraction of 

a chemical in a cosmetic product using the generated 

multi-class SVM model implies that the model input 

provides information on the product category, the 

function the chemical has in the product, the structural 

descriptors of the chemical and its physicochemical 

properties. Based on this information, the model will 

predict whether the chemical in the specified category 

is represented by a low, medium or high weight fraction. 

 

Conclusions 

An assessment of the toxicity exposure of chemicals 

in consumer products involves knowledge of the 

qualitative and quantitative composition of these 

products. Namely, on the basis of knowledge of the 

structural properties and amount of chemicals used in 

the product, the negative impact of the product on 

the consumer and the environment can be assessed. 

This paper proposes methods that, rest on the available 

information on the functional and quantitative use of 

chemicals in thousands of real consumer products, 

generate predictive chemical classification models based 

on the function and weight fractions that chemicals 

have in cosmetic products. With these models, the 

composition of products with unavailable information 

can be assumed. These methods clearly define the 

approach by which great libraries of chemicals can 

be screened to identify potential substitutes for toxic 

chemicals without impairing the functions that the 

original chemicals have in the product. Equally, a clear 

procedure is defined on the manner in which the weight 

fraction of a chemical in a cosmetic product can be 

estimated using the generated predictive model. Thus, 

one can implicitly expose the chemical composition 

of cosmetic products that is inaccurate or completely 

inaccessible for many products. 

The research results show that the proposed bagging 

SVM method can overcome the disadvantages of 

previously applied methods, i.e. increase the precision 

of prediction. 

The proposed methods can help address the lack of 

information needed to assess exposure to risk from the 

use of cosmetic products containing toxic chemicals 

in their composition. 
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