**FLAVONOIDS AND BIOLOGICAL ACTIVITIES OF CENTAUREA NERIMANIAE S. KULTUR**

GULAY MELIKOGLU 1*, NURTEN OZSOY 2, TUGBA YILMAZ-OZDEN 2, MERYEM SEYDA ERBAY 1, SEZIN ANIL 1, BERNA OZBEK CELIK 3, SUKRAN KULTUR 4

1Department of Pharmacognosy, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey
2Department of Biochemistry, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey
3Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey
4Department of Pharmaceutical Botany, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey

*corresponding author: gulaymelikoglu@hotmail.com

**Abstract**

_Centaurea nerimaniae_ S. Kultur, an endemic species from the Turkish flora, distributed in south Anatolia (Icel Province) was investigated for its flavonoids and _in vitro_ antioxidant, anti-cholinergic, anti-inflammatory and antibacterial activities. The phytochemical investigation of the plant led to the isolation of five flavonoids, identified as cirsimaritin, hispidulin, apigenin, isoakempferide and apigenin 7-O-glucoside. In addition to its ability to inhibit AChE and lipid peroxidation, induced by Fe³⁺/ascorbate system, scavenge DPPH radicals, and to reduce Fe³⁺ to Fe²⁺, the extract showed strong COX-1 and COX-2 inhibitory and antimicrobial activities, suggesting that this plant could act as an antioxidant and anti-inflammatory agent against disorders, associated with oxidative damage, as well as an effective phytotherapeutic agent against some fungal and bacterial diseases.

**Keywords:** _Centaurea nerimaniae_ S. Kultur, flavonoids, antioxidant, anti-acetylcholinesterase, anti-inflammatory, antimicrobial activity

**Introduction**

Considering the rich variety of medicinal plants commonly grown and used in Turkey and the high prevalence of cancer, cardiovascular, inflammatory and neurodegenerative diseases, more investigations should be carried out in order to understand the beneficial effects of Turkish medicinal plants [33]. The genus _Centaurea_ is represented by 217 species and 60% of which are endemic in Turkey [9]._Centauraea nerimaniae_, named in the honour of the Turkish botanist Prof. Dr. Neriman Özhatay, is an endemic species distributed in south Anatolia (Icel Province) [28]. _Centaurea_ species are used in folk medicine because of their digestive, expectorant, antidiarrheal, tonic, and antipyretic properties [5]. These species have been extensively studied mainly for their antioxidant [1, 2, 24, 34, 46-48], antimicrobial [20, 23, 27, 43, 44], acetylcholinesterase (AChE) inhibitory [2, 34], anti-inflammatory and wound healing [25] as well as analgesic properties [26]. There are some reports attributing the anti-inflammatory effects of _Centaurea_ species or its ingredients to inhibition of NF-kB activation, reduction of expression of COX-2 and iNOS [17, 46]. Phytochemical studies have shown that the main components of _Centaurea_ sp. are sesquiterpene lactones, acetylenes and flavonoids [3]. Previous phytochemical screening showed that _Centaurea_ species contain flavonoids including apigenin, luteolin, salvigenin, kaempferol, hispiduln and cirsimaritin, and sesquiterpene lactones of the guianolide type as diain, cynaropicrin, deacyclo-cynaropicrin and janerin [6]. Formisano et al. summarized the distribution of flavonoids in 112 _Centaurea_ species [18]. However, there are no reports regarding the phytochemicals as well as biological activities of _Centaurea nerimaniae_. Isolation of flavonoids and evaluation the therapeutic potential of _Centaurea nerimaniae_ by examining its antioxidant, anti-inflammatory, antimicrobial and anticholinesterase properties is aimed in this study.
Materials and Methods

Plant material
The plant material of Centaurea nerimaniae S. Kultur were collected from Mersin Province, near Arslanköy location (Turkey) and identified by Prof. Dr. Şükran Kültür at Istanbul University, Pharmaceutical Botany Department, in June 2012. Voucher specimens were maintained in the Herbarium of Istanbul University, Faculty of Pharmacy, Istanbul, Turkey (ISTE 98163).

Extraction and isolation
The dried aerial parts (900 g) of C. nerimaniae were first subjected to extraction with petroleum ether and then with EtOH (95%) in a Soxhlet apparatus. The petroleum ether extract (A) was concentrated and extracted with 60% ethanol. The aqueous extract was concentrated and extracted with chloroform (B) in a separator funnel. The concentrated ethanol (95%) extract was diluted with H2O and successively extracted with benzene (C), chloroform (D) and ethyl acetate (E) for fractionation.

For the purification of flavonoids from the B, D and E extracts, silica gel column chromatography, paper chromatography and preparative TLC (thin-layer chromatography) were applied. As a result of this work cirsimaritin and hispidulin were isolated from the petroleum ether-chloroform (B), apigenin and isokaempferide were isolated from the ethanol-chloroform (D), and apigenin 7-O-glucoside was isolated ethanol-ethyl acetate (E) extracts. The structures of the pure compounds were elucidated based on Rf values, colour reactions and spectroscopic methods in comparison with standards or with reference data.

The dried aerial parts (50 g) of the plant were extracted with methanol in a Soxhlet apparatus. The methanol extract was evaporated to dryness by a rotary evaporator. The extract was kept at -20°C and was then lyophilized. In this way, the crude methanolic extract was obtained and used for biological activity studies.

Biochemical assays
In the present study, the extract was screened for its antioxidant activity using thiobarbituric acid (TBA) test based on the lipid peroxidation of liposomes [15], 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging [10], Trolox equivalent antioxidant capacity (TEAC) assay with 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS⁺⁻) radical cation [37] and ferric reducing ability of plasma (FRAP) assay [7]. Quercetin was used as reference antioxidant.

The extracts total phenolic compounds were evaluated using Folin-Ciocalteu reagent according to Slinkard and Singleton method [42] and expressed as mg gallic acid equivalents (GAE)/g of dry weight (DW). Total flavonoids were evaluated by AlCl₃ colorimetric method described by Sakanaka et al. [39] and expressed as mg catechin equivalents (CE)/g of DW.

Inhibition or radical scavenging activities (%) of the extract were calculated according to the equation:

\[ \text{Inhibition or radical scavenging activity} = \left[ 1 - \left( \frac{\text{Absorbance of sample}}{\text{Absorbance of control}} \right) \right] \times 100 \]

The AChE inhibitory activity of the extract was determined by the method of Ellman et al. [16]. Galantamine was used as a standard AChE inhibitor and distilled water was used as a control.

COX-1 and COX-2 inhibitory activities of the extract were determined by calculating the inhibition percent of prostaglandin production measured by enzyme immunoassay kit following the manufacturer's protocol (Cayman). Indomethacin was used as a standard.

Antibacterial and antifungal effects
Antibacterial and antifungal effects of the extract were determined by the microbroth dilutions technique performed in accordance with the recommendations in the Clinical Laboratory Standards Institute (CLSI) document M7-A5 and M 27-A [12, 13]. The minimum inhibitory concentration (MIC) values of the extract against studied microorganisms were determined.

Statistical analysis
Results were expressed as a mean ± standard deviation. Statistical comparisons were performed with Student’s t-test. Differences were considered significant at p < 0.05.

Results and Discussion

Isolated compounds
In the present study, five flavonoid compounds were obtained from the aerial parts of C. nerimaniae. These compounds were characterized as cirsimaritin (B ext., 6 mg), hispidulin (D ext. 9 mg), apigenin (D ext. 5 mg), isokaempferide (E ext. 7 mg) and apigenin 7-O-glucoside (E ext. 22 mg) by UV spectral data compared with the data in the literature [19, 29, 36], and by TLC comparison with reference standards (Table I). Apigenin 7-O-glucoside was the major compound.

Similarly, Nikolova and Bancheva [31] have reported that Centaurea species are rich sources of externally accumulated flavonoid aglycones such as luteolin, apigenin, 6-hydroxyluteolin 6-methyl, kaempferol 3-methyl and scutellarein 6,4’-dimethyl ethers. They reported that 6-hydroxyluteolin, methyl derivatives of scutellarein and 6-O-substituted flavones are found in the exudates of Centaurea davidovii and C. parilica, while 6-O-substituted flavonols, such as quercetagetin, methyl derivatives of 6-hydroxykaempferol and flavonols with 3-methylation are found in exudates of C. stenolepis.
Formisano et al. [18] reviewed reports on flavonoids from the Centaureinae subtribe of the family Asteraceae, as well as the 13C-NMR-spectral data in the literature pointed out that only 16 of the 72 recognized genera of the subtribe Centaureinae have been investigated for the occurrence of flavonoids. From the data reported by Formisano et al. [18], it was seen that the majority of the genera of the Centaureinae have not been investigated for their flavonoid profile yet.

Many earlier studies showed that the aerial part of Centaurea species is an alternative source of phenolic compounds. Comparing to other Centaurea species collected from Turkey, it was evident that the phenolic content of Centaurea nerimaniae is lower than the values found for Centaurea species investigated by Aktumsek et al. [1] (ranged from 82.27 to 175.40 mg GAE/g extract), Centaurea species investigated by Şen et al. [41] (ranged from 4.825 to 12.460 mg GAE/g DW), and Centaurea species investigated by Aktumsek et al. [2] (ranged from 207.78 to 232.76 mg/g extract).

A similar content of phenolic compounds were reported by Zengin et al. [47] for Centaurea urvillei subsp. hayekiana (17.22 mg GAE/g extract), Zengin et al. [46] for C. pulchella, C. patula and C. tchihatcheff (ranged from 22.27 to 55.00 mg GAE/g extract), Ozsoy et al. [34] for Centaurea antiocchia var. praeculta (3.68 mg GAE/g DW) and Uysal et al. [45] for Centaurea urvillei subsp. stepposa (33.11 mg GAE/g extract).

Quercetin, apigenin and kaempferol, the most common flavonoids present in Centaurea species, may contribute to the antioxidant activity.

### Table I

<table>
<thead>
<tr>
<th>Flavonoid</th>
<th>MeOH</th>
<th>NaOMe</th>
<th>AlCl₃</th>
<th>AlCl₃/HCl</th>
<th>NaOAc</th>
<th>NaOAc/H₂BO₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cirsimaritin</td>
<td>332</td>
<td>370</td>
<td>364</td>
<td>340, 285sh, 263</td>
<td>388</td>
<td>333, 280</td>
</tr>
<tr>
<td>Hispidulin</td>
<td>335</td>
<td>393</td>
<td>390sh</td>
<td>370, 352, 300, 280, 260sh</td>
<td>370</td>
<td>337, 254</td>
</tr>
<tr>
<td>Apigenin</td>
<td>356</td>
<td>392</td>
<td>384</td>
<td>381, 340, 299, 376</td>
<td>381</td>
<td>338, 302sh, 268sh</td>
</tr>
<tr>
<td>Isokaempferide</td>
<td>352</td>
<td>404</td>
<td>396</td>
<td>396, 345, 303, 277</td>
<td>396</td>
<td>365, 301, 275</td>
</tr>
<tr>
<td>Apigenin 7-O-glucoside</td>
<td>333</td>
<td>386</td>
<td>386, 348, 301, 276</td>
<td>382, 341, 299, 277</td>
<td>387, 355, 267, 256sh</td>
<td>340, 267</td>
</tr>
</tbody>
</table>

sh = shoulder

The results of the chemical characterization of C. nerimaniae reconfirmed the value of the Centaurea genus as a source of the flavonoid aglycons.

Our results were in accordance with the flavonoid composition of the Centaurea species from the Turkish flora [45].

Total phenolic and flavonoid contents. The total phenolic content of C. nerimaniae was 2.23 ± 0.11 mg GAE/g DW, while the flavonoid level was 1.25 ± 0.10 mg CE/g DW (Table II).

### Table II

<table>
<thead>
<tr>
<th>C. nerimaniae</th>
<th>EC (mg/g DW)</th>
<th>Phenolic compounds (PC) (mg GAE/g DW)</th>
<th>Flavonoids (mg CE/g DW)</th>
<th>PC/EC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>96.25</td>
<td>2.23 ± 0.11</td>
<td>1.25 ± 0.10</td>
<td>2.32</td>
</tr>
</tbody>
</table>

Values were the means of three replicates ± standard deviation

TBA method, which evaluates the ability of an antioxidant to inhibit lipid peroxidation and DPPH radical scavenging assays were chosen as representative of hydrogen transfer, while TEAC and FRAP methods were chosen as representative of single electron transfer reaction based assays.

Table III presents the results of antioxidant activities of the extract, expressed as EC₅₀, TEAC and FRAP values.

Compared to DPPH radicals, the methanolic extract of the aerial parts of Centaurea nerimaniae was found to be more effective ABTS radical cation scavenger. The highest E₅₀ value was found in TBA test, showing the less ability of the extract to protect liposomes from lipid peroxidation. TEAC value was similar to the FRAP value, which indicates that the extract is effective in donating of electrons. However, the results showed a weak antioxidant activity compared to the reference antioxidant quercetin. Although, the extract was less active than quercetin (p < 0.05), it was seen that it has hydrogen and a single electron donor activities, thus could serve as an antioxidant. These activities may be attributed mostly to the presence of the phenolic group, a feature common to natural phenolic compounds.
These results are in accordance with previous studies, which reported the efficacy of *Centaurea* species to prevent the lipid peroxidation [2, 41], scavenge free radicals [1, 34, 41] and act as reducing agent [2, 14].

**Cholinesterase inhibitory activity**

Cholinesterase inhibitors are used for the treatment of Alzheimer’s disease (AD) and vascular dementia [30]. There are limited reports on the AChE inhibitory activity of *Centaurea* species. Methanolic extract of *C. nerimaniae* exhibited modest AChE inhibitory activity of 42.67 ± 3.05% at 10 mg/mL concentration. However, the extract showed less inhibitory activity against AChE than galantamine (86.17 ± 1.44%, at 0.05 mg/mL concentration). Similarly, the extract from the aerial parts of *Centaurea polypodifolia* var. *pseudobehehn* was reported to show 45.50% inhibition towards both AChE and butyrylcholinesterase (BChE) [2]. The chloroform extract of *C. pulchella* was reported to have noticeable inhibition value on AChE (95.93%) and BChE (95.69%) at 2 mg/mL. Otherwise, Boğa et al. [8] reported that the petroleum ether, acetone and methanol extracts of *C. balsamita*, *C. depressa*, *C. lycopifolia* did not show any AChE activity. This difference may be explained by the different extraction procedure and the diversity of phenolic compounds. Roseiro et al. pointed out that a free OH group at C3 position of the flavonoids enhanced their AChE inhibitory effect, while the glycosylation or lacking of OH at C3 (luteolin and apigenin) do not have a positive effect [38].

**Anti-inflammatory activity**

The expression of COX-2 is regulated by a broad spectrum of pro-inflammatory mediators, involved in inflammation. The association of COX-2 with inflammation resulted in a search for specific COX-2 inhibitors that would provide therapeutic anti-inflammatory effects similar to those of NSAIDs but did not cause the unwanted side effects [22]. Many reports suggest that *Centaurea* species exert anti-inflammatory properties in a rat model of inflammatory bowel disease (IBD) [4], carrageenan-induced paw oedema [17, 25], TPA-induced ear oedema formation [26], most probably through the COX-2 inhibition and expression or Nuclear factor-κB.

The extract of *C. nerimaniae* has been shown to cause 92.16 ± 3.49% inhibition of COX-1 and 68.03 ± 4.90% inhibition of COX-2 at 10 mg/mL. However, this level of inhibition is significantly lower when compared to indomethacin which was shown to cause 97.1 ± 0.1% inhibition of COX-1 at 0.005 mg/mL and 95.92 ± 2.2% inhibition of COX-2 at 0.050 mg/mL. Similarly, *Centaurea anthioica* has been found to inhibit both COX-1 and COX-2 enzymes [34]. These findings support the reported anti-inflammatory activity of *Centaurea* species.

Anti-inflammatory activities of *Centaurea* species have been explained by their content of sesquiterpene lactones (SLs), obtained from many plants of this family [4]. Flavonoids have been reported to display marked *in vitro* and *in vivo* anti-inflammatory activities. It was reported that the ability of some flavonoids, such as rutin, quercetin, apigenin and centaureadin, to inhibit cyclooxygenase-2 expression, may contribute to the anti-inflammatory properties of *Centaurea* species [11, 21, 32]. Anti-inflammatory activity of hispidulin, naturally occurring flavone found in *C. nerimaniae*, were investigated in the TPA mouse ear edema model and was found to be active [35]. These findings provide an explanation for the reported anti-inflammatory properties of *Centaurea* extracts.

**Antimicrobial activity**

Microorganisms used in this study represent pathogenic species mostly associated with nosocomial infections. Antibacterial effect of the extract from *C. nerimaniae* was tested on gram-negative (Escherichia coli, *K. pneumonia*, *Pseudomonas aeruginosa*, *Proteus mirabilis*) and gram-positive (*Staphylococcus aureus*, *Streptococcus epidermidis*) bacteria, and antifungal effect of the extract was investigated on *Candida albicans*. The results were displayed in Table IV. The extract exhibited inhibitory activity against all tested strains. *C. nerimaniae* extract had the greatest potential of antibacterial activity against both gram-positive and gram-negative bacteria with the MICs ranged from 1.25 to 10 mg/L. According to the antibacterial activity results, *S. aureus* was the most sensitive species (MIC = 1.25 mg/L), followed by *P. mirabilis* (MIC = 2.5 mg/L), *K. pneumonia* (MIC = 5 mg/L), *P. aeruginosa* (MIC = 5 mg/L) and *S. epidermidis* (MIC = 10 mg/mL). Moreover, our antifungal activity

**Table III**

<table>
<thead>
<tr>
<th><em>C. nerimaniae</em></th>
<th>DPPH</th>
<th>ABTS</th>
<th>Anti-LPO</th>
<th>FRAP* (mM)</th>
<th>TEAC** (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.81 ± 0.94a</td>
<td>4.55 ± 0.19b</td>
<td>11.87 ± 0.56c</td>
<td>2.45 ± 0.18a</td>
<td>1.89 ± 0.05a</td>
<td></td>
</tr>
<tr>
<td>Quercetin</td>
<td>0.098 ± 0.001b</td>
<td>0.155 ± 0.012b</td>
<td>0.062 ± 0.003b</td>
<td>2.34 ± 0.010a</td>
<td>1.98 ± 0.03a</td>
</tr>
</tbody>
</table>

Values were the means of three replicates ± standard deviation. Values with different letters in the same column were significantly (p < 0.05) different. a EC<sub>50</sub> value: The effective concentration at which the antioxidant activity was 50%; DPPH and ABTS radicals were scavenged by 50% and LPO was inhibited by 50%. b Expressed as mM ferrous ions equivalents. c Expressed as mM trolox equivalents. d Determined at 10 mg/mL for the extract and 0.3 mg/mL for quercetin.
findings showed that *C. albicans*, the yeast, also was highly sensitive (MIC = 1.25 mg/L) to the extract.

**Table IV**

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>MIC values (mg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Extract</td>
</tr>
<tr>
<td>Gram-positive</td>
<td></td>
</tr>
<tr>
<td><em>S. aureus</em></td>
<td>1.25</td>
</tr>
<tr>
<td><em>S. epidermidis</em></td>
<td>10</td>
</tr>
<tr>
<td>Gram-negative</td>
<td></td>
</tr>
<tr>
<td><em>E. coli</em></td>
<td>5</td>
</tr>
<tr>
<td><em>K. pneumoniae</em></td>
<td>5</td>
</tr>
<tr>
<td><em>P. aeruginosa</em></td>
<td>5</td>
</tr>
<tr>
<td><em>P. mirabilis</em></td>
<td>2.5</td>
</tr>
<tr>
<td>Yeast</td>
<td></td>
</tr>
<tr>
<td><em>C. albicans</em></td>
<td>1.25</td>
</tr>
</tbody>
</table>

*cefuroxime; * ceftazidime; *clotrimazole

These results confirmed the findings in the other studies reporting the antibacterial activities of *Centaurea* species [24, 27, 41, 43, 44]. Further studies will be focused on the *in vivo* antimicrobial activities and chemical identification of the antimicrobial ingredients with antimicrobial activities close or stronger than tested standard antibiotics or antifungal, clotrimazole.

**Conclusions**

The present study reported for the first time the flavonoid profile and biological activities of *C. nerimaniae*. The observed antioxidant, antibacterial, anti-inflammatory and anti-cholinesterase activities may be due to the presence of the five flavonoids (cirsimaritin, hispidulin, apigenin, isokaempferide and apigenin 7-O-glucoside) identified by thin-layer chromatography (TLC). It was concluded that this species has the potential for effective treatment of various illnesses, including inflammation, microbial and AD diseases.

**Acknowledgement**

Scientific Research Projects Coordination Unit of Istanbul University supported this work, Project number 30111.

**References**

18. Formisano C, Riganus D, Senatore F, Bancheva S, Maggio A, Rosselli S, Bruno M, Flavonoids in subtribe...


