LONG TERM EFFECTS OF OLANZAPINE CUMULATIVE DOSES ON FAT TISSUE. AN EXPERIMENTAL MODEL IN RATS

GEORGE ECHIM1, CĂTĂLINA GABRIELE PISOSCHI2*, CAMIL EUGEN VARI3*, MELINDA KOLCSĂR1, BIANCA EUGENIA ÖSZ3, ZSOLT GÁLL3, CĂLIN CHIBELEAN4, ANCA BERBECARU-IOVAN5, MARIA T. DOGARU5

1Doctoral School, University of Medicine and Pharmacy Tîrgu Mureș, 38 Gh. Marinescu Street, RO-540139, Romania
2Department of Biochemistry, University of Medicine and Pharmacy Craiova, 2-4 Petru Rares Street, RO-200349, Romania
3Department of Pharmacology and Clinical Pharmacy, University of Medicine and Pharmacy Tîrgu Mures, 38 Gh. Marinescu Street, RO-540139, Romania
4Department of Urology, University of Medicine and Pharmacy Tîrgu Mureș, 38 Gh. Marinescu Street, RO-540139, Romania
5Department of Pharmacology, University of Medicine and Pharmacy Craiova, 2-4 Petru Rares Street, RO-200349, Romania

*corresponding author: e_pisoschi@yahoo.com

Abstract

Olanzapine, a second generation antipsychotic drug, is frequently used to treat schizophrenia due to several advantages that it has over classical antipsychotics in terms of side effects. However, the occurrence of certain side effects adverse reactions with regards to long term administration is mentioned in the medical literature. The aim of our study was to investigate the effects of various doses of olanzapine, given for 9 weeks, on body weight and to evaluate the drug’s pharmaco-toxicological tropism related mostly to fat and liver tissues in Wistar rats. Olanzapine was administered by gavage in doses of 0.5, 2.0, 4.0 and 6.0 mg/kgbw, respectively, to 70 adult Wistar rats with body weights ranging from 260 to 330 grams, and other two groups serving as controls received only vehicle solution, without any active ingredient. During the experiment, the animals were weighed weekly, and at the end they were euthanized, when samples from their fatty and liver tissues were taken for subsequent histological analyses. The results indicated a relative weight gain of the animals from all treated groups compared to their initial state, the observed changes being gender and dose related, excepting the 6 mg/kgbw group where toxicity signs were noticed during the study. Histological analyses of adipose and liver tissues revealed obvious and significant irreversible inflammatory alterations after 9 weeks of treatment, correlated with the total cumulated olanzapine dose and with the gender of the animals. High doses of olanzapine caused toxic reactions in the second part of the study.

Rezumat

Olanzapina face parte din categoria antipsihoticelor moderne, fiind frecvent utilizată în tratamentul schizofreniei, având o serie de avantaje privind efectele secundare față de antipsihoticele clasice. Cu toate acestea, date din literatura de specialitate semnalizează apariția unor efecte secundare /reacții adverse la administrarea acesteia pe termen lung. Obiectivul studiului nostru a fost de a urmări efectele olanzapinei, administrată la sobolani albi Wistar, în doze diferite timp de 9 săptămâni, asupra curbei ponderale și a evaluării tropismului farmacotoxicologic. Cu predilecție asupra ţesutului adipos și hepatic. S-au utilizat 70 de ani, sobolani albi Wistar, adulți cu greutatea cuprinsă între 260 g și 330 g cărora li s-au administrat prin gavaj, olanzapină în doze de 0.5, 2.0, 4.0 și 6.0 mg/kg corp, și două loturi martor, care nu au primit medicatie, doar vehiculul. Pe parcursul experimentului, animalele au fost cântărite săptămânal, iar la sfârșit animalele au fost sacrificate și s-a prelevat țesutul adipos și ficatul care ulterior au fost analizate histologic. Rezultatele arată o creștere în greutate a animalelor față de greutatea inițială la toate loturile tratate, modificările fiind dependente de sex și de doza administrată, cu excepția lotului care a primit olanzapină în doză de 6 mg/kg corp, unde s-au înregistrat semne de toxicitate pe parcursul studiului. Analiza histologică a depozitelor adipoase, respectiv a ficatului arată modificările semnificative, cu fenomene inflamatorii evidente, corelate cu doza totală cumulativă, cu caracter irreversibil.

Keywords: olanzapine, adipose tissue, rats, weight gain

Introduction

Schizophrenia affects more than 1% of the adult population worldwide, being a chronic disease requiring lifelong treatment [12]. Modern antipsychotics such as olanzapine, clozapine and risperidone, which preferentially block the central nervous system (CNS) 5-HT2 dopamine D2 (10:1) receptors, have exhibited significantly diminished side effects compared to classical neuroleptics (lack of extrapyramidal reactions, reduced incidence of hyperprolactinaemia). However, the use of these new drugs may lead to the occurrence of metabolic syndrome, characterized by weight gain and metabolic disturbances, the phenomenon being most noticeable in the case of...
Olanzapine is one of the most prescribed antipsychotic drugs, due to its higher efficacy in treating both positive and negative symptoms of schizophrenia, and its efficacy in treating bipolar disorder, autism, mania and depression [5, 16, 19]. Although there is a low probability that olanzapine treatment causes extrapyramidal side effects and prolactin levels are not significantly influenced, there are major concerns regarding metabolic disturbances arising from its long-term use. There has been a few research studies performed so far to evaluate the potentially dose-dependent toxic effects of the drug. Since the data published in the literature with regards to olanzapine’s adverse effects has not yet been adequately clarified and is still controversial, the objective of the present study was set to investigate the effects of several dosing regimens over 9 weeks in Wistar rats and to analyse the changes in growth, body weight and adipose tissue.

Materials and Methods

There were used 7 groups of Wistar rats (males and females, respectively as described in Table I for the exact gender distribution) treated at fixed time intervals every morning by oral gavage with olanzapine doses of 0.5, 2.0, 4.0 and 6.0 mg/kgbw respectively, for a period of nine weeks. Two groups of animals only received vehicle solution and served as absolute controls. The individual body weight of the study animals ranged between 260 and 330 grams, at the beginning of the experiment.

Table I

<table>
<thead>
<tr>
<th>Group No.</th>
<th>No. of animals / gender</th>
<th>Medication and Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>10 Wistar rats - male</td>
<td>0.5 mg/kg bw – olanzapine</td>
</tr>
<tr>
<td>2.</td>
<td>10 Wistar rats - female</td>
<td>0.5 mg/kg bw – olanzapine</td>
</tr>
<tr>
<td>3.</td>
<td>10 Wistar rats - female</td>
<td>2.0 mg/kg bw – olanzapine</td>
</tr>
<tr>
<td>4.</td>
<td>10 Wistar rats - female</td>
<td>4.0 mg/kg bw – olanzapine</td>
</tr>
<tr>
<td>5.</td>
<td>10 Wistar rats - female</td>
<td>6.0 mg/kg bw – olanzapine</td>
</tr>
<tr>
<td>6.</td>
<td>10 Wistar rats - male</td>
<td>Vehicle – without active substance</td>
</tr>
<tr>
<td>7.</td>
<td>10 Wistar rats - female</td>
<td>Vehicle – without active substance</td>
</tr>
</tbody>
</table>

1 mL of 1.0 % Tween 80 aqueous solution was used to dissolve the olanzapine dose administered daily to each animal.

Results and Discussion

Considering the weight gain, the greatest difference compared to baseline weight was recorded from the
first week of treatment in groups of animals treated with a dose of 2.0 mg/kg bw olanzapine, while a significant increase was recorded in the female group treated with 4.0 mg/kg bw olanzapine. In groups treated with 0.5 mg/kg bw olanzapine, the initial weight loss was noticed for both genders, then a slight increase was noticed in males and higher weight gained the females. During the study, a change in behaviour was observed in the treated groups, with decreased spontaneous motility, state of indifference and sluggishness. The group of female rats receiving 6.0 mg/kg bw showed weight gain during the first 4 weeks, then there was a stagnation or even a slight decrease in body weight in some of the animals compared to the initial state, which has not been previously mentioned in the literature. Signs of toxicity (wheezing, coughing and choking) were also recorded for the 6 mg/kg bw dose. These toxicity symptoms might be correlated with hypercoagulability, which has been observed for this group. It is also possible that this effect was not related to the administered drug, assuming events that could otherwise occur during the study – virosis or inflammatory processes. Analysing the body weight variation during the treatment period revealed a marked increase in olanzapine treated groups. The change in body weight was even more evident in female rats, where a statistically significant increase was reached in a shorter time interval (Figures 1, 2 and 3).
Figure 3.
Body weight variations of rats treated with 2.0 mg/kg bw olanzapine during the nine weeks treatment period. Data are expressed as mean ± SD. Arrows indicate the earliest observed statistically significant difference compared to the initial state in each group (p < 0.05).

Figure 4.
Body weight variations of rats treated with 4.0 and 6.0 mg/kg bw olanzapine respectively during the nine weeks treatment period. Data are expressed as means ± SD. Arrows indicate the earliest observed statistically significant difference compared to initial state in each group (p < 0.05). *** - p < 0.001, statistically significant difference obtained with Dunn’s Multiple Comparison test. Circles indicate the reduction of body weight compared to the previous week.

At the highest dose of 6.0 mg/kg bw, olanzapine produced a significant initial increase in body weight after the first four weeks of treatment (p < 0.001), but a significant reduction of this parameter was observed in the last four weeks of the treatment period (p < 0.001; Figure 4).

Table II

<table>
<thead>
<tr>
<th>Gender</th>
<th>Groups</th>
<th>Mean difference between final and initial weight (g)</th>
<th>Friedman statistic</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>Control</td>
<td>6.60</td>
<td>32.97</td>
<td>< 0.001*</td>
</tr>
<tr>
<td></td>
<td>Olanzapine 0.5 mg/kgbw</td>
<td>21.30</td>
<td>97.49</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Female</td>
<td>Control</td>
<td>8.30</td>
<td>31.84</td>
<td>< 0.001*</td>
</tr>
<tr>
<td></td>
<td>Olanzapine 0.5 mg/kgbw</td>
<td>42.00</td>
<td>103.00</td>
<td>< 0.0001</td>
</tr>
<tr>
<td></td>
<td>Olanzapine 2.0 mg/kgbw</td>
<td>50.70</td>
<td>87.08</td>
<td>< 0.0001</td>
</tr>
<tr>
<td></td>
<td>Olanzapine 4.0 mg/kgbw</td>
<td>42.00</td>
<td>87.19</td>
<td>< 0.0001</td>
</tr>
<tr>
<td></td>
<td>Olanzapine 6.0 mg/kgbw</td>
<td>-1.11</td>
<td>61.83</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

* No statistically significant difference was observed between initial and final weight of the animals, but a statistically significant fluctuation was observed using Dunn’s Multiple Comparison test during the treatment period.

The increase was most obvious in the females that received 2.0 mg/kg bw and 4.0 mg/kg bw of olanzapine, respectively. Abdominal fat was noticed in large quantities even in the groups treated with a dose of 0.5 mg/kg bw olanzapine, as compared to the control groups (Table III).
The largest amount of fat was found in the female group treated with a dose of 2.0 mg of olanzapine/kgbw, where the difference was significantly higher compared to the control group, and the lowest amount of fat was found in the male group treated with a dose of 0.5 mg of olanzapine/kgbw, the differences being very small, compared to the control group.

Table III

<table>
<thead>
<tr>
<th>Total abdominal fat (g)</th>
<th>p values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control – Female</td>
<td>8.8 ± 1.1</td>
</tr>
<tr>
<td>Control – Male</td>
<td>7.9 ± 0.9</td>
</tr>
<tr>
<td>Olanzapine 0.5 mg/kgbw – Female</td>
<td>10.9 ± 0.9</td>
</tr>
<tr>
<td>Olanzapine 0.5 mg/kgbw – Male</td>
<td>8.1 ± 1.1</td>
</tr>
<tr>
<td>Olanzapine 2.0 mg/kgbw – Female</td>
<td>14.8 ± 1.2</td>
</tr>
<tr>
<td>Olanzapine 4.0 mg/kgbw – Female</td>
<td>14.1 ± 0.9</td>
</tr>
<tr>
<td>Olanzapine 6.0 mg/kgbw – Female</td>
<td>12.1 ± 1.3</td>
</tr>
</tbody>
</table>

Histological examination of the adipose depots

The adipose depots collected from controls and rats treated with various doses of olanzapine were sectioned and stained for histological examination. Usual staining with haematoxylin-eosin (H&E) revealed differences between controls and treated animals with respect to adipose tissue histology. H&E staining of adipose tissue sections collected from control rats revealed the characteristic features for each kind of adipose depot assessed (Figures 5 and 6).

Figure 5.
Visceral adipose depot from a control rat: intraperitoneal depot with unilocular polyhedral or oval adipocytes, relatively constant in size (a, x100); well vascularized perirenal depot with adipocytes of various sizes, but smaller than those from the peritoneal WAT (b, x100)

Figure 6.
Subcutaneous adipose depot from a control rat. Unilocular polyhedral adipocytes almost identical in size, with an abundant stromal vascular fraction (a, x100, b, x400)

Samples from control rats revealed few macrophages, cells that may be involved in the tissue remodelling process, needed for adapting to various amounts of fat to be stored or used. Analysis of adipose tissue samples collected from rats treated with olanzapine revealed morphological changes compared to those from control rats. Both the visceral (Figure 7 a - e) and peripheral adipose depots (Figure 7f) presented signs of adipocyte hypertrophy and hyperplasia.

Figure 7.
Adipose depots from rats treated with olanzapine (intraperitoneal - a. 0.5 mg; b. 2.0 mg; c. 4.0 mg; d. 6.0 mg; perirenal - e. 6.0 mg; subcutaneous - f. 6.0 mg) revealed aspects of adipocyte hypertrophy and hyperplasia and the presence of numerous immune cells (H&E, x200, x400, x100, x100, x100, x400)

Cell contour presented many anfractuosities, with irregular or interrupted cell membranes, and increased numbers of immune cells in the visceral pads (Figure 8).
High power microscope objective lenses revealed that these cells – monocytes, lymphocytes, polymorphonuclear cells, plasma cells and macrophages – were more abundant as the olanzapine dose increased (Figures 9). High incidence of immune cells was accompanied by an increase of the fibrillary elements in the non-adipocyte fraction. In this experiment, we observed that macrophages infiltrated in the stromal vascular fraction form “crown-like” structures located around the adipocytes (Figure 10). Even if morphological and histological changes were also observed in the subcutaneous adipose pads, they were less infiltrated with macrophages than the visceral depots (Figure 11).

Assessment of hepatic toxicity was done using liver tissue samples that were prepared for histological examination and stained with haematoxylin eosin. Hepatocyte morphology, centrilobular veins and portal fields were observed for signs of inflammation, cellular regeneration or reparative processes (cicatrisation, including fibrosis) (Figures 12-17).
Figure 1. Olanzapine 2.0 mg/kgbw - Microscopic description: mild vascular stasis – dilated sinusoid capillaries, filled with red blood cells.

Figure 2. Olanzapine 4.0 mg/kgbw - Microscopic description: mild chronic inflammatory infiltrate in the portal fields, with polymorphic character: lymphocytes, segmented neutrophil granulocytes and numerous eosinophils.

Figure 3. Olanzapine 6.0 mg/kgbw - Microscopic description: abundant chronic inflammatory infiltrate in the portal fields; unorganized micro and macro vacuolar intra hepatocyte adipose dystrophy.

Our research results have shown body weight gain, which was most obvious in the group of females treated with a dose of 2.0 mg olanzapine/kgbw. An increase in body weight was also recorded with the dose of 4.0 mg olanzapine/kgbw, similar to the increase noticed with the 0.5 mg/kgbw dose. Weight gain was very slight in the group of males treated with 0.5 mg of olanzapine/kgbw, but yet statistically significant compared to the control group. These results are in accordance with
previously reported observations that recorded certain side effects of antipsychotics, such as gender dependent weight gain [4, 11, 15].

A change in behaviour was observed in the treated groups during the 9 weeks of the study, with an obvious decrease of spontaneous motility, state of indifference and slowness, similar results being reported by other research groups [23]. It appears that chronically administered olanzapine produces hyperphagia associated with body weight gain and increased fat accumulation [6, 21].

The amount of adipose tissue collected from the treated groups was significantly increased compared to the control group. Accumulation of fat in the animals that have not greatly increased in weight implies significant metabolic changes. However, molecular mechanisms have not yet been elucidated [7]. The underlying mechanism might be olanzapine’s blockade on two types of receptors, 5-HT2C and H1, both regulating the food intake. Moreover, a central role of leptin was also proposed for hyperphagia, as hypothalamic insensitivity to this hormone was also observed with olanzapine administration [14].

Difficulty in breathing, choking associated with cough might be related to hypercoagulability, which was revealed when blood samples were taken for further investigations [2, 9, 10, 20]. The adverse effect might as well not be related to the administered drug, assuming events of different kinds – viral infections or inflammatory processes.

After performing the histological analysis we found changes in colour and a “fish-egg” – like granular appearance of the adipose tissues in olanzapine-treated rats, such morphological alterations being also reported by Tan et al. in their studies [17]. These changes were observed in both genders, even if the weight gain was limited in male rats.

Subcutaneous and visceral adipose tissues were composed mainly by unilocular polyhedral or oval white adipocytes, which varied in size with nutritional status and type of depot. Cells from the visceral adipose depots were smaller than those from subcutaneous depots with a decreased capacity of fat storage, prone to cell necrosis in conditions of cell hypertrophy when the critical cell size is exceeded [1, 3].

We found that olanzapine treatment induced histological changes of both visceral and subcutaneous adipose pads, in both genders. Still, the histological changes were dose-dependent and more pronounced in female rats. The increase of adipocyte number and size was accompanied by an infiltration of immune cells, because adipocyte hypertrophy/hyperplasia generate areas of local micro hypoxia and the necrosis that follows may be a stimulus to regulate macrophage infiltration of the adipose tissue. We also observed an increase of the non-adipocyte fraction of the adipose tissue, which also seemed to be dose-dependent.

Our findings are generally in accordance with those of Mann et al., who also reported a significant increase of visceral fat in olanzapine-treated rats compared to vehicle treated animals [11]. Studies performed by Tan et al. reported the same morphological and histological changes of subcutaneous adipose pads, and they suggest that adipocyte proliferation in olanzapine-treated rats was dose and time dependent [17]. The more important changes of the visceral depots suggest that visceral fat storage could be more sensitive to olanzapine than peripheral accumulation.

Changes of the non-adipocyte fraction could be accompanied by a defective extracellular matrix (ECM) storage that signals infiltrative cell infiltration in a similar manner as collagen VI, the main protein of the adipose tissue’s ECM [13]. The hepatic toxicity described in this experimental model has a definite but currently underdiagnosed clinical correspondent, most likely hidden by the use of polymedication in schizophrenic patients. The targeted toxicity of olanzapine might serve as an experimental model for liver dysfunction, useful for the screening of potentially protective agents (Sengupta P et al., 2010) [23]. The mechanism of liver toxicity was revealed by Eftekhar A et al., and seems to involve oxidative stress related phenomena, involving reactive oxygen species, favouring of lipid peroxidation and the depletion of glutathione’s reduced state, all depending on the CYP450 mediated biotransformation; secondary hepatic toxicity mechanisms appear to include mitochondrial changes, through cellular lysis and induced apoptosis, and also by massive release of lysosomal origin proteases [7, 24].

Conclusions

We concluded that the study demonstrated an obvious increase in body weight in female Wistar rats treated with a dose of 2.0 mg olanzapine/kgbw, as this group presented the most significant accumulation of fat. With the 4.0 mg/kgbw dose, the increase in body weight was evident but small, as well as the quantity of adipose tissue; toxicity signs were observed with the 6.0 mg/kgbw dose, such changes being somewhat correlated with the alterations observed in the adipose tissue.

This study provided evidence that besides the significant body weight gain, olanzapine treatment also induced various morphological changes in adipose depots. Adipocyte hypertrophy causes local areas of hypoxia in the adipose tissue and the subsequent adipocytes necrosis represents an important stimulus for phagocytosis. The stroma from the visceral pads of olanzapine-treated rats
displayed an increased infiltration of macrophages forming “crown-like” structures around white adipocytes. Liver toxicity manifests gradually, along with the cumulated dose, featuring signs of discreet inflammation that extend up to unorganized micro and macro vacuolar intra hepatocyte adipose dystrophy.

References

